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INTRODUCTION

In a series of papers Hung[1-3] pioneered the development of shearography, an optical 
NDE technique that detects gradients of surface displacements. Its utility for qualitative 
flaw characterization has been demonstrated, and while there is a need for using shearogra-
phy in NDE for quantitative analysis, a large amount of the research[2-7] has concentrated 
on the qualitative evaluation of structures and materials. The purpose of this paper is to 
begin building upon a foundation for the newly emerging quantitative shearography[8].

 We begin the analysis by considering the approximations leading to the governing 
shearography equation,

, (1)

where 

 

Df 

 

is the relative phase change due to displacements between two nearby points on 
the surface of a deformed test sample, 

 

l 

 

is the wavelength of the coherent beam of light, u, 
v, and w are the surface displacements in the x,y and z directions respectively, 

 

D

 

x is the 
camera shear and the coefficients A,B and C are geometric functions of x, y and z.

We then identify and quantify the error terms that arise from this approximate relation. 
Due to the complexity of the equations a rigorous analysis does not seem possible. We 
instead settle for a formal analysis which we feel provides valuable information concerning 
the limitations of shearography. We show that for typical problems (displacements or dis-
placement gradients << camera shearing) the predominant error term in this approximation 
is relatively small provided the curvature of the displacement field is not that large. How-
ever, if one further simplifies the equation by considering only the out-of-plane displace-
ments (as is often done in many commercial instruments) the error can become significant. 
This error depends upon geometric and physical parameters and, as we show, can be esti-
mated with the aid of a simple formula.

DERIVATION OF THE GOVERNING EQUATION

For clarity we shall briefly repeat part of the derivation of (1) using an approach slightly 
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different from HungÕs. The approach was chosen to make the analysis of the error terms as 
convenient as possible. For a more complete derivation see Hung[3]. 

Shearography is based on the phenomenon that coherent waves of light having different 
path lengths interfere and produce a fringe pattern. This fringe pattern represents a change in 
phase and can be shown to be proportional to the first partial derivatives of the deformed 
objects surface displacements.

Fig. 1 shows two points  and  on the surface of an object 
which, upon deformation, move to the points  and  +   

 respectively. The change in the 
path length of a ray of light coming from a source S(x,y,z) and reflected from the point 
P(x,y,z), on the surface, to the observer at O(x,y,x), due to the deformation, is given by

. (2)

Similarly, for the sheared point Q(x+
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x,y,z) the change in path length is 

. (3)
 

In shearography, the interference of the sheared and unsheared waves gives rise to a phase 
change given by, 

. (4)

To derive (1) and examine the errors inherent in its derivation it is convenient to define 
the following auxiliary function,

  

  

   

Fig. 1.     Optical path differences between deformed and undeformed configurations.
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where, , , , ,   
 and . The resulting expressions on the right hand side are 

obtained by substituting the appropriate distances from Fig. 1, into  and  above.

To help facilitate the error analysis, which will require the explicit computation of 
higher order terms, we take an approach different from HungÕs[1] and expand (5) in a Tay-
lor series in  about the point  to obtain
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where,
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and

.

The term linear in  in (6) is proportional to the shearography equation. The next term 
in the expansion will be used to obtain an approximation for the error induced by replacing 
( ) with only the  term. The equation Hung derives is slightly different, but can 
be obtained from our results by expanding the coefficients A, B and C in terms of the dis-
placements 

 

u

 

, 

 

v

 

 and 

 

w

 

. This would unnecessarily complicate our analysis, so it will not be 
done here.

A FORMAL ERROR ANALYSIS

1. The Error Associated with Truncating Terms of Order  and Higher

The error is defined to be the difference between the exact change in path-length and the 
shearography approximation and is defined as

(8)

A complete analysis would require a rigorous bound on the higher order terms in the Taylor 
expansion, but due to the complexity of the equations, this does not seem feasible at the 
present time. However, it is useful to have some knowledge about the magnitude of the first 
order terms used in the shearography equation relative to the next order terms which are dis-
carded. While a study of the relative size of the two terms will not enable us to fully quantify 
the error involved in the approximation, it will provide valuable information concerning the 
shearographic approximation.

With this in mind we consider the second order terms in (6) which we have separated 
into two parts, where the latter terms are all quadratic in the displacement gradients. For 
practical problems / , / , and /  << 1, therefore, we shall ignore terms in (6) 
that are quadratic in displacement gradients compared to the linear terms. To analyze the 
resulting equation we consider two special cases in which we will first assume that the 2nd 
derivative, and then the 1st derivative terms dominate the  coefficient.

Case 1
Assuming that the 2nd derivative terms dominate we ignore the gradients in the  

coefficient in (6). This situation could arise if the bending strain in the 

 

x

 

 direction, which is 
proportional to the curvature of the out-of-plane displacement field, is much larger than the 
in-plane strains.

Considering only the most dominant term from (6) we can approximate the error in (8) 
by

(9)

To obtain a bound on this error let

, over the region of interest, (10)

and substitute (10) into (9) to obtain,

. (11)
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The expression within the absolute value symbol can be shown to be bounded, i.e., 
, and consequently, we obtain an approximate bound for the error

. (12)

If we now let

, over the region of interest, (13)

and consider the ratio of (12) with respect to the first two terms in (6) we have,

. (14)

The above result is an approximation of the percentage of the optical signal due to the 
error term. If an estimate of the N/M term can be made, then a shear can be chosen to yield 
as small an error as desired. A plot of this function for various percentages of error, and dif-
ferent shears and N/M ratios is shown in Fig. 2. Even for relatively large shears (  
meters the error does not become appreciable until M is about 20 times larger than N. Con-
sequently, the approximation is a relatively good one provided the problem being studied 
does not contain bending strains that are significantly larger than the in-plane strains.

Case 2
Assuming that the gradients dominate we ignore the 2nd derivative terms in the  

coefficient in (6) and again take the ratio of the magnitude of the second term with respect to 
the magnitude of the entire expression to obtain:

Fig. 2. Contour plot of (14) showing the relative error for different shears and N/M ratios.
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 (15)

Considering the terms in (7) we see that the expression in absolute value in (15) is on the 
order of magnitude of the distance from the object or source to the sample. A contour plot of 
this relation for various relative errors is shown in Fig. 3. Thus, when the bending strains are 
not a factor in the problem we would either need to introduce a relatively large shear (> a 
few centimeters) or move the laser and camera extremely close (<.1 meters) to the test sam-
ple before a significant error would result.

2. The Error Associated with Truncating the In-Plane Gradient Terms in the Shearography 
Equation

Additional approximations are often employed to further simplify the shearography 
equation. For many practical problems the coefficients A and B are much smaller than C, 
and hence are often ignored.The question we now address is just how significant the error in 
making this assumption is. The relevant expression is given as

(16)

 

The displacements 

 

u,v

 

 and 

 

w

 

 are quite small in comparison to 

 

x

 

, 

 

y

 

 and 

 

z

 

 for the field of 
interest and, consequently, can be ignored. To simplify the analysis further we will require 
that both the light source and camera be located at the center of a relatively flat test area a 
fixed distance  from the object, i.e. , , and 

 (see Fig.4).

Fig. 3. Contour plot of (15) showing the relative error for different shears and distances from 
the test object.

p2
Dx

A B C+ +
D G- H-

Dx+
=

x x0- u+

R0

x xs- u+

Rs
+

è ø
æ ö

x¶
¶u y y0- v+

R0

y ys- v+

Rs
+

è ø
æ ö

x¶
¶v

+ +

z z0- w+

R0

z zs- w+

Rs
+

è ø
æ ö

x¶
¶w

z x0 xs y0 ys z 0= = = = = R0 Rs= Rº
z0 zs= zº

0 .5 1
0.01

.5

1

D
x

A+B+C
D-G-H

25 %

10 %

50 %75 %



 

Fig. 4. Configuration for normal viewing and illumination

Using these values (16) then reduces to

(17)

Now letting 

, over the region of interest, (18)

and consider the ratio of the magnitude of the second order term with the magnitude of both 
terms to obtain

 . (19)

This represents the percentage of the expression due to the out-of-plane gradient 
term. Ideally, we would like this to be as close to unity as possible. A contour plot of this 
expression is shown in Fig. 5. The quantity (|x|+|y|)/ , is the ratio of the distance from the 
center of the test sample with respect to the distance of the camera/laser to the test sample 
(see Fig. 4). As the field of view is increased the in-plane gradients can have a significant 
effect on the signal. This effect can become even more pronounced if their are relatively 
large in-plane strains. For example, if the camera/laser is about 1 meter from the test sample, 
and if the in-plane strains are about 20 times larger than the out-of-plane gradient, then at a 
radius of 50 mm from the center of the field of view only 50% of the signal is due to the out-
of-plane gradient term. Thus, one needs to be aware that both in-plane and out-of-plane 
terms are present in the signal before a proper fringe analysis can be done.

SUMMARY

Using a non rigorous analysis we were able to show that the approximations leading 
to the governing shearography equation (1) introduce relatively small error terms for practi-
cal problems. In addition, this error is easily controlled by varying the shear. However, if the 
shearography equation is further simplified to approximate only out-of-plane gradients, then 
a significant error can result. As the field of view increases the in-plane gradients begin to 
effect and then eventually dominate the fringe pattern. A simple formula has been derived to 
obtain a rough estimate of the relative percentages of the signal due to in-plane and out-of-
plane gradients. Thus, if a quantitative evaluation of the fringe pattern is desired it is neces-
sary to either take these results into account or to alter the test to limit their effects.
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Fig. 5. Contour plot of (19) showing the percentage of the expression due to the out-of-plane 
gradient term as a function of the distance from the center of the test sample and the relative 
magnitude of the out-of-plane versus the in-plane gradients.

REFERENCES

1. Y. Y. Hung, ÒA Speckle-Shearing Interferometer,Ó Optics Commun., 11, 732 (1974).

2. Y. Y. Hung, and C. Y. Liang, ÒImage-shearing camera for direct measurement of sur-
face strains,Ó Appl. Opt. 18(7), pp. 1046-1051 (1979).

3. Y. Y. Hung, ÒShearography: a new optical method for strain measurement and nonde-
structive testing,Ó Opt. Eng., pp. 391-395 (May/June, 1982).

4. F. S. Chau, S. L. Toh, C. J. Tay, and H. M. Shang, ÒSome Examples of Nondestructive
Flaw Detection by Shearography,Ó J. Nondestr. Eval. Vol. 8, No. 4 (1989).

5. S. L. Toh, F. S. Chau, H. M. Shang,  and C. J. Tay, ÒFlaw detection in composites using
shearography,Ó 

 

Proc. 6th Int. Conf. Composite Materials and 2nd Eur. Conf. Composite
Materials, 

 

 London, UK. July 20-24, (1987).

6. H. M. Shang, S. L. Toh, F. S. Chau, V. P. W. Shim, C. J. Tay, and S. L. Toh, ÒThe use
of laser for nondestructive flaw detection,Ó J. Inst. Eng. Singapore, 28 (5) pp. 45-50
(1988).

7. S. Nakadate, T. Yatagai, and H. Saito, ÒDigital speckle-pattern shearing interferome-
try,Ó Appl. Opt. 19(24), pp. 4241-4246 (1980).

8. S. L. Toh, F. S. Chau, V. P. W. Shim, C. J. Tay,  and H. M. Shang, ÒApplication of
Shaerography in Nondestructive Testing of Composite Plates,Ó  J. Mater. Proc. Tech-
nol. 23 pp. 267-75 (1990).

25 % 50 %

75 %

90 %

.001 .05 .1
0.0

0.05

0.1

 ¶ w  
N
/ ¶ x 

z
(|

x|
+|

y|
)


